Jump to content

EV’s and Gas Engines


Chester86

Recommended Posts

This is an excellent breakdown. 
 
Batteries, they do not make electricity – they store electricity produced elsewhere, primarily by coal, uranium, natural gas-powered plants, or diesel-fueled generators.  So, to say an EV is a zero-emission vehicle is not at all valid.
 
Also, since 22% of the electricity generated in the U.S. is from coal-fired plants, it follows that 22% of the EVs on the road are coal-powered, do you see?"
 
Einstein's formula, E=MC2, tells us it takes the same amount of energy to move a five-thousand-pound gasoline-driven automobile a mile as it does an electric one. The only question again is what produces the power? To reiterate, it does not come from the battery; the battery is only the storage device, like a gas tank in a car.
 
There are two orders of batteries, rechargeable, and single-use. The most common single-use batteries are A, AA, AAA, C, D. 9V, and lantern types. Those dry-cell species use zinc, manganese, lithium, silver oxide, or zinc and carbon to store electricity chemically. Please note they all contain toxic, heavy metals.
 
Rechargeable batteries only differ in their internal materials, usually lithium-ion, nickel-metal oxide, and nickel-cadmium. The United States uses three billion of these two battery types a year, and most are not recycled; they end up in landfills. California is the only state which requires all batteries be recycled. If you throw your small, used batteries in the trash, here is what happens to them.
 
All batteries are self-discharging.  That means even when not in use, they leak tiny amounts of energy. You have likely ruined a flashlight or two from an old, ruptured battery. When a battery runs down and can no longer power a toy or light, you think of it as dead; well, it is not. It continues to leak small amounts of electricity. As the chemicals inside it run out, pressure builds inside the battery's metal casing, and eventually, it cracks. The metals left inside then ooze out. The ooze in your ruined flashlight is toxic, and so is the ooze that will inevitably leak from every battery in a landfill. All batteries eventually rupture; it just takes rechargeable batteries longer to end up in the landfill.
 
In addition to dry cell batteries, there are also wet cell ones used in automobiles, boats, and motorcycles. The good thing about those is, ninety percent of them are recycled. Unfortunately, we do not yet know how to recycle single-use ones properly.
 
But that is not half of it.  For those of you excited about electric cars and a green revolution, I want you to take a closer look at batteries and also windmills and solar panels. These three technologies share what we call environmentally destructive production costs. 
 
A typical EV battery weighs one thousand pounds, about the size of a travel trunk.  It contains twenty-five pounds of lithium, sixty pounds of nickel, 44 pounds of manganese, 30 pounds cobalt, 200 pounds of copper, and 400 pounds of aluminum, steel, and plastic. Inside are over 6,000 individual lithium-ion cells.
 
It should concern you that all those toxic components come from mining. For instance, to manufacture each EV auto battery, you must process 25,000 pounds of brine for the lithium, 30,000 pounds of ore for the cobalt, 5,000 pounds of ore for the nickel, and 25,000 pounds of ore for copper. All told, you dig up 500,000 pounds of the earth's crust for just - one - battery."
 
Sixty-eight percent of the world's cobalt, a significant part of a battery, comes from the Congo. Their mines have no pollution controls, and they employ children who die from handling this toxic material. Should we factor in these diseased kids as part of the cost of driving an electric car?"
 
I'd like to leave you with these thoughts. California is building the largest battery in the world near San Francisco, and they intend to power it from solar panels and windmills. They claim this is the ultimate in being 'green,' but it is not.  This construction project is creating an environmental disaster.  Let me tell you why.
 
The main problem with solar arrays is the chemicals needed to process silicate into the silicon used in the panels. To make pure enough silicon requires processing it with hydrochloric acid, sulfuric acid, nitric acid, hydrogen fluoride, trichloroethane, and acetone. In addition, they also need gallium, arsenide, copper-indium-gallium- diselenide, and cadmium-telluride, which also are highly toxic. Silicon dust is a hazard to the workers, and the panels cannot be recycled.
 
Windmills are the ultimate in embedded costs and environmental destruction. Each weighs 1688 tons (the equivalent of 23 houses) and contains 1300 tons of concrete, 295 tons of steel, 48 tons of iron, 24 tons of fiberglass, and the hard to extract rare earths neodymium, praseodymium, and dysprosium. Each blade weighs 81,000 pounds and will last 15 to 20 years, at which time it must be replaced. We cannot recycle used blades.
 
There may be a place for these technologies, but you must look beyond the myth of zero emissions.  

 "Going Green" may sound like the Utopian ideal but when you look at the hidden and embedded costs realistically with an open mind, you can see that Going Green is more destructive to the Earth's environment than meets the eye, for sure.

 

Link to comment
Share on other sites

44 minutes ago, mat said:

Just had a discussion about electric vehicles. I can't confirm accuracy but what I understand is the batteries are good or warranted for 100,000. To replace them is $8,000-10,000. How does that affect the vehicle depreciation? Where do the used batteries go?

The batteries are placed at the end of the rainbow, carried there by unicorns.

It will be a perfect world when we're all electric.

Link to comment
Share on other sites

  • 2 weeks later...

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
  • Member Statistics

    46,207
    Total Members
    1,837
    Most Online
    JBarry68
    Newest Member
    JBarry68
    Joined


  • Posts

    • I agree but Hitchcock had better skill players 
    • Waco LaVega is about equal to Hitchcock in speed and size. 
    • You’re the one talking about Elementary school kids.  What I’m saying is that there are kids who play Jr School ball in GCCISD and then transfer into BHISD/GPISD/LPISD/DPISD between 8th and 9th.  Doing so means no PAPF/eligibility questionnaire and they get to play Freshman/JV, work out with the team, etc. and look homegrown because they transferred before freshman year.  it’s a loophole.  All the big programs do it.  That’s why the UIL rules changes, to close up the 8th-to-9th transfer portal, and it isn’t even taking effect until Aug 1 2025 so you’ll see these transfers this summer. Also, as far as BHISD being closed instead of open, just look at the GCCISD transfer numbers I posted.  GCCISD loses twice as many kids to BHISD per year, the “closed” district, than they do to the open Districts in the area.  Anyone who lives here knows folks who’ve used MeeMaw’s address to get their kids in there.  It is what it is and if it wasn’t, UIL wouldn’t be changing those rules and sending one of their own to the DECs now would they?   Go ask Coach Abseck how many kids in his program are 8th Grade transfers.  We know that at North Shore that number is at least 20% because of the numbers they had to provide UIL during their recruiting investigation.  I’ll bet BHISD’s numbers are AT LEAST that.  Again, THEY ALL DO IT.  
    • According to Texas Tribune, Gccisd, Laporte and deer park are all rated B. Barbers Hill is an A. GC has a higher 4 year graduation rate than LP or DP. BH is far and away the best district on this side of town. GC has a much higher percentage economically disadvantaged at 71.7% with LP being next closest at 52%. Surprised that GC is performing so well considering. All of the players that would likely make a great football team are out by GCM and Sterling. If GCM had Lee's coach and dropped back down into 5A division 1, they would be able to compete very well against BH and LP. I don't know what their problem is with getting the athletes to gel into an actual team. Lee still beat them both this year and was sort of a down year by Lee's standards. Lot of injuries some kids moved out of district and they are paper thin as it is.
  • Topics

×
×
  • Create New...